« Competitive programming in Haskell: vectors and 2D geometry » Competitive programming in Haskell: 2D cross product, part 1

Competitive programming in Haskell: data representation and optimization, with cake

Posted on June 29, 2020
Tagged , , , ,

In my previous post I challenged you to solve Checking Break, which presents us with a cake in the shape of a rectangular prism, with chocolate chips at various locations, and asks us to check whether a proposed division of the cake is valid. A division of the cake is valid if it is a partition (no pieces overlap and every part of the cake is in some piece) and every piece contains one chocolate chip.

No one posted a solution—I don’t know if that’s because people have lost interest, or because no one was able to solve it—but in any case, don’t read this post yet if you still want to try solving it! As a very small hint, part of the reason I chose this problem is that it is an interesting example of a case where just getting the correct asymptotic time complexity is not enough—we actually have to work a bit to optimize our code so it fits within the allotted time limit.

The algorithm

When solving this problem I first just spent some time thinking about the different things I would have to compute and what algorithms and data structures I could use to accomplish them.

Implementation and optimization

Let’s start with some preliminaries: LANGUAGE pragmas, imports, main, and the parser.

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE RecordWildCards   #-}
{-# LANGUAGE TupleSections     #-}

import           Control.Arrow
import           Data.Bool
import qualified Data.ByteString.Lazy.Char8 as C
import           Data.Monoid

import           ScannerBS

main = C.interact $
  runScanner (many tc) >>> init >>>
  map (solve >>> bool "NO" "YES") >>>
  C.unlines

data TC = TC { cake :: Box, chips :: [Pos], parts :: [Box] }

tc :: Scanner TC
tc = do
  a <- int
  case a of
    -1 -> return undefined
    _  -> do
      xs <- three int
      let [b,c,m] = xs
          cake    = Box (Pos 1 1 1) (Pos a b c)
      TC cake <$> m `times` pos <*> m `times` box

The parser is worth remarking upon. The input consists of multiple test cases, with a single value of \(-1\) marking the end of the input. This is annoying: ideally, we would have a many combinator that keeps running a Scanner until it fails, but we don’t. To keep things simple and fast, our Scanner abstraction does not support parse failures and alternatives! The many combinator we made keeps running a given Scanner until the end of input, not until it fails. The quick-and-dirty solution I adopted is to make the test case Scanner return undefined if it sees a -1, and then simply ignore the final element of the list of test cases via init. Not pretty but it gets the job done.

Representing positions and boxes

Next let’s consider building abstractions for 3D coordinates and boxes. It is very tempting to do something like this:

type Pos = [Integer]
type Box = [Pos]

-- Check whether one position is componentwise <= another
posLTE :: Pos -> Pos -> Pos
posLTE p1 p2 = and $ zipWith (<=) p1 p2

-- ... and so on

Using list combinators like zipWith to work with Pos and Box values is quite convenient. And for some problems, using lists is totally fine. Having a small number of large lists—e.g. reading in a list of \(10^5\) integers and processing them somehow—is rarely a problem. But having a large number of small lists, as we would if we use lists to represent Pos and Box here, slows things down a lot (as I learned the hard way). I won’t go into the details of why—I am no expert on Haskell performance—but suffice to say that lists are a linked structure with a large memory overhead.

So let’s do something more direct. We’ll represent both Pos and Box as data types with strict fields (the strict fields make a big difference, especially in the case of Pos), and make some trivial Scanners for them. The volume function computes the volume of a box; given that the coordinates are coordinates of the cubes that make up the pieces, and are both inclusive, we have to add one to the difference between the coordinates. Note we assume that the first coordinate of a Box should be elementwise less than or equal to the second; otherwise, the call to max 0 ensures we will get a volume of zero.

data Pos = Pos !Int !Int !Int
data Box = Box !Pos !Pos

pos :: Scanner Pos
pos = Pos <$> int <*> int <*> int

box :: Scanner Box
box = Box <$> pos <*> pos

volume :: Box -> Int
volume (Box (Pos x1 y1 z1) (Pos x2 y2 z2)) = (x2 -. x1) * (y2 -. y1) * (z2 -. z1)
  where
    x -. y = max 0 (x - y + 1)

Another very important note is that we are using Int instead of Integer. Using Integer is lovely when we can get away with it, since it means not worrying about overflow at all; but in this case using Int instead of Integer yields a huge speedup (some quick and dirty tests show about a factor of 6 speedup on my local machine, and replacing Int with Integer, without changing anything else, makes my solution no longer accepted on Kattis). Of course, this comes with an obligation to think about potential overflow: the cake can be at most \(10^6\) units on each side, giving a maximum possible volume of \(10^{18}\). On a 64-bit machine, that just fits within an Int (maxBound :: Int is approximately \(9.2 \times 10^{18}\)). Since the Kattis test environment is definitely 64-bit, we are good to go. In fact, limits for competitive programming problems are often chosen so that required values will fit within 64-bit signed integers (C++ has no built-in facilities for arbitrary-size integers); I’m quite certain that’s why \(10^6\) was chosen as the maximum size of one dimension of the cake.

Pos and Box utilities

Next, some utilities for checking whether one Pos is elementwise less than or equal to another, and for taking the elementwise max and min of two Pos values. Checking whether a Box contains a Pos simply reduces to doing two calls to posLTE (again assuming a valid Box with the first corner componentwise no greater than the second).

posLTE (Pos x1 y1 z1) (Pos x2 y2 z2) = x1 <= x2 && y1 <= y2 && z1 <= z2
posMax (Pos x1 y1 z1) (Pos x2 y2 z2) = Pos (max x1 x2) (max y1 y2) (max z1 z2)
posMin (Pos x1 y1 z1) (Pos x2 y2 z2) = Pos (min x1 x2) (min y1 y2) (min z1 z2)

contains :: Box -> Pos -> Bool
contains (Box lo hi) p = posLTE lo p && posLTE p hi

To test whether a box is a valid box within a given cake, we test that its corners are in the correct order and fit within the low and high coordinates of the cake.

valid :: Box -> Box -> Bool
valid (Box lo hi) (Box c1 c2) = posLTE lo c1 && posLTE c1 c2 && posLTE c2 hi

How to test whether two given boxes intersect or not? There are probably many ways to do this, but the nicest way I could come up with is to first find the actual Box which represents their intersection, and check whether it has a positive volume (relying on the fact that volume returns 0 for degenerate boxes with out-of-order coordinates). In turn, to find the intersection of two boxes, we just take the coordinatewise max of their lower corners, and the coordinatewise min of their upper corners.

intersection :: Box -> Box -> Box
intersection (Box c11 c12) (Box c21 c22) = Box (posMax c11 c21) (posMin c12 c22)

disjoint :: Box -> Box -> Bool
disjoint b1 b2 = volume (intersection b1 b2) == 0

The solution

Finally, we can put the pieces together to write the solve function. We simply check that all the given cake parts are valid; that every part contains its corresponding chocolate chip; that every pair of parts is disjoint; and that the sum of the volumes of all parts equals the volume of the entire cake.

solve :: TC -> Bool
solve (TC{..}) = and
  [ all (valid cake) parts
  , and $ zipWith contains parts chips
  , all (uncurry disjoint) (pairs parts)
  , sum (map volume parts) == volume cake
  ]

Computing all pairs

Actually, there’s still one missing piece: how to compute all possible pairs of parts. The simplest possible thing would be to use a list comprehension like

[(x,y) | x <- parts, y <- parts]

but this has problems: first, it includes a pairing of each part with itself, which will definitely have a nonzero intersection. We could exclude such pairs by adding x /= y as a guard, but there is another problem: (p2,p1) is included whenever (p1,p2) is included, but this is redundant since disjoint is commutative. In fact, we don’t really want all pairs; we want all unordered pairs, that is, all sets of size two. We can do that with the below utility function (which I have now added to Util.hs):

pairs :: [a] -> [(a,a)]
pairs []     = []
pairs [_]    = []
pairs (a:as) = map (a,) as ++ pairs as

This is accepted, and runs in about 0.91 seconds (the time limit is 2 seconds). However, I was curious whether we are paying anything here for all the list operations, so I wrote the following version, which takes a binary operation for combining list elements, and a Monoid specifying how to combine the results, and directly returns the monoidal result of combining all the pairs, without ever constructing any intermediate lists or tuples at all. It’s sort of like taking the above pairs function, following it by a call to foldMap, and then manually fusing the two to get rid of the intermediate list.

withPairs :: Monoid r => (a -> a -> r) -> [a] -> r
withPairs _ []     = mempty
withPairs _ [_]    = mempty
withPairs f (a:as) = go as
  where
    go []        = withPairs f as
    go (a2:rest) = f a a2 <> go rest

To use this, we have to change the solve function slightly: instead of

  , all (uncurry disjoint) (pairs parts)

we now have

  , getAll $ withPairs (\p1 p2 -> All $ disjoint p1 p2) parts

This version runs significantly faster on Kattis—0.72 seconds as opposed to 0.91 seconds. (In fact, it’s faster than the currently-fastest Java solution (0.75 seconds), though there is still a big gap to the fastest C++ solution (0.06 seconds).) I don’t completely understand why this version is faster—perhaps one of you will be able to enlighten us!

For next time

For next time, we’ll go back to computational geometry: I invite you to solve Cookie Cutters.